
3 - Linear and Logistic Regression-1

Machine Learning Course

Lecture 3 - Linear and Logistic Regression

Lecturer: Haim Permuter Scribe: Ziv Aharoni

Throughout this lecture we talk about how to use regression analysis in Machine

Learning problems. First, we introduce regression analysis in general. Then, we talk about

Linear regression, and we use this model to review some optimization techniques, that

will serve us in the remainder of the course. Finally, we will discuss classification using

logistic regression and softmax regression. Parts of this lecture are based on lecture notes

from Stanfords CS229 machine learning course by Andrew NG[1]. This lecture assumes

you are familiar with basic probability theory. The notation here is similar to Lecture 1.

I. AN INTRODUCTION TO REGRESSION VS CLASSIFICATION

Regression analysis, a branch in statistical modelling, is a statistical process for

estimating the relationship between Y , the dependent variable, given observations of

X , the independent variables. Similarly, in Supervised Learning, we seek to build a

statistical model (hypothesis) that maps optimally each x ∈ X to y ∈ Y with respect

to the underlying statistics of X, Y . If y ∈ Y can take values from a discrete group of

unordered values, we refer the problem as classification. Usually in classification there

is no meaning of distance between different labels Y . However, if y ∈ Y can take values

from a continuous interval of values, we refer the problem as regression. In regression

there should be a meaning of distance between different values of Y .

In machine learning, the commonly used terminology is to call problems with discrete

Y as classification problems, and problems of continuous Y as regression problems. In

the remainder of the course, we will use this convention and will clarify the terminology

if conflicts will arise.

Let’s sharpen the differences between regression and classification by an example of

weather forecasts. We set our independent variables as X1, the temperature in given

places, and X2, the humidity in a given places. When we define our dependent variable

3 - Linear and Logistic Regression-2

to be the amount of precipitation, we will choose a hypothesis that will map X1, X2 to the

actual precipitation amount. In this case, we refer the problem as a regression problem.

When we define the dependent variable to be the ”weather type” (clear, cloudy, rainy,

etc), our hypothesis will use the independent variables to classify X1, X2 to the correct

group of weather types. In this case we refer the problem as classification problem.

Now, after we discussed about the terminology, let’s delve into a commonly used

regression model, Linear Regression.

II. LINEAR REGRESSION

In linear Regression, as implied from its name, we try to estimate the value of y with

a linear combination of the new feature vector x ∈ R

m with respect to our training

set
{

(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))
}

. Let’s define hθ(x) as the hypothesis for

y from x with respect to the parameters θ, where θ ∈ Rm+1 is defined by

θ =















θ0

θ1
...

θm















.

Hence, hθ(x) is given by

hθ(x) = θ0 + x1θ1 + · · ·+ xmθm, (1)

where θ0 is the bias term. For convenience let’s define x0 = 1 so we can rewrite (1) as

hθ(x) =
m
∑

k=0

xkθk = θTx. (2)

Our Goal is to find the linear combination coefficients, θ, that will yield the hypothesis

which maps x(i) to y(i) most accurately. In order to do that, we will have to assume that

the training set are representative of the whole problem. If it is not the case, we should

enrich our training set appropriately (if it is possible). Next, we need to choose θ that will

make hθ(x
(i)) ≈ y(i), for all i = 1, . . . , n (the ≈ sign stands for approximately equal).

By achieving a hypothesis which maps accurately x(i) to y(i) for the entire training set,

3 - Linear and Logistic Regression-3

combined with the assumption that our training set is representative of the whole problem,

we can say that our hypothesis is optimal, with the limits of a linear model.

Now, given the training set, how should we choose θ? In order to do that, we need to

define a function which measures the error between our hypothesis based on the x(i)’s and

the corresponding y(i)’s for all i = 1, . . . , n. Let’s define a Cost function that measures

the error of our hypothesis.

Definition 1 (MSE Cost Function)

MSE Cost Function, f : R(m+1)×n → R is defined by

C(θ) =
1

2n

n
∑

i=1

(hθ(x
(i))− y(i))2

=
1

2n

n
∑

i=1

(θTx(i) − y(i))2 (3)

We can see that when hθ(x
(i)) ≈ y(i) for all i = 1, . . . , n , then our cost function

satisfies C(θ) ≈ 0. Moreover, every term in our cost function is positive, therefore C(θ) ≈
0 ⇐⇒ hθ(x

(i)) ≈ y(i) for all i = 1, . . . , n. These are two important properties, that lead

us to the conclusion that finding θ∗ that minimizes the cost function, eventually forces

hθ(x
(i)) ≈ y(i) for all i = 1, . . . , n. By achieving that, we are essentially accomplishing

our goal.

Let’s formulate our goal,

θ∗ = argmin
θ∈Rm+1

C(θ). (4)

Note that if we find θ∗, our linear regression model can be used on new sample x by the

following equation:

hθ(x) = (θ∗)Tx. (5)

Now, after formulating our problem, let’s survey some minimization methods to serve us

in minimizing our cost function.

3 - Linear and Logistic Regression-4

III. COST FUNCTION MINIMIZATION

In this section we discuss about some various ways for minimizing C(θ) with respect

to θ. The methods that we focus on are:

1) Gradient Descent:

• Batch.

• Stochastic (Incremental).

2) Newton- Raphson Method.

3) Analytically.

Definition 2 (Gradient Descent algorithm)

The Gradient Descent algorithm finds a minimum of a function by an iterative process

with the following steps:

1) Set θ0 as the initial guess for θ∗.

2) Repeat the following updating rule until one of the following stopping condition:

• no change in parameters, i.e., d(θ(t+1), θ(t)) < δ, where δ is defined to be the

convergence tolerance, d(·) is defined to be a distance norm.

• no change in the cost. i.e., |C(θ(t))− C(θ(t+1))| < δ.

• number of iteration fixed, i.e., t < T , where T is the number of iterations.

θ(t+1) := θ(t) − α∇θC(θ(t)) (6)

where:

• t = 0, 1, . . . is the iteration number.

• α is the ”Learning Rate” and it determines how large step the algorithm takes

every iteration.

• ∇θ is the gradient of C(θ) with respect to the parameters θ and is defined by:

∇θC(θ) =
[

∂C(θ)
∂θ0

∂C(θ)
∂θ1

. . .
∂C(θ)
∂θm

]T

Intuitively, we can think of the algorithm as guessing an initial place in the domain.

Then, it calculates the direction and magnitude of the steepest descent of the function

3 - Linear and Logistic Regression-5

for the current θ (∇θC(θ)) and finally, in the domain, it takes a step, proportional to the

descent magnitude and to a fixed predefined step size α to the next θ. In case we want to

use the algorithm for maximization, we will exchange the ’−’ sign with a ’+’ sign and

then we will take step in the direction of the steepest ascent of the function. In this case

the algorithm is called gradient ascent. Note that, generally, the algorithm searches ’a’

minimum and not ’the’ minimum of the function. If we want to claim that the algorithm

finds the global minimum of the function we will need to prove that the function has

only one minimum, which means that the function is convex.

Here are some examples of gradient descent as it runs to minimize convex or non

convex functions.

Fig. 1: initial guess of GD

on a convex function

Fig. 2: 3 iterations of GD on

a convex function

Fig. 3: 64 iterations of GD

on a convex function

The leftmost figure shows us the value of f(θ0). The middle figure shows the algorithm

progress after three iterations and the rightmost figure shows the algorithm after achieving

convergence. We can visualize the fact that gradient descent applied on convex function

will converge to the global minimum of the function, assuming that α is relatively small.

Next, let’s examine the performance of gradient descent on an non-convex function

given by f(x, y) = x5 − 3x2 + y4 + 7y2. This function has no global minimum nor

maximum but has a local minimum at (1.06266, 0). At the three upper figures we can

see that for some initial guess the algorithm converged to the local minimum of the

function. At the three lower figures we can see that for some other initial guess the

algorithm began to make progress in the domain to the area where f(x, y) → −∞.

3 - Linear and Logistic Regression-6

Fig. 4: initial guess of GD

on a non-convex function

Fig. 5: 3 iterations of GD on

a non-convex function

Fig. 6: 64 iterations of GD

on a non-convex function

This approves the fact that gradient descent applied on a non-convex function generally

doesn’t converge to the global minimum of the function.

Fig. 7: initial guess of GD

on a non-convex function

Fig. 8: 3 iterations of GD on

a non-convex function

Fig. 9: 7 iterations of GD on

a non-convex function

Therefore, we can conclude that by choosing a convex cost function to our problems,

we can assure finding its global minimum by an iterative process such as gradient descent.

Luckily, the MSE cost function is a convex function with respect to θ so we can assure

that gradient descent will find its global minimum.

Now, let’s implement the gradient descent method on our linear regression problem.

For doing that, we have to calculate the term ∇θC(θ). Let’s find an expression for the

jth coordinate of ∇θC(θ) in our problem.

∂C(θ)

∂θj
=

∂

∂θj

1

2n

n
∑

i=1

(θTx(i) − y(i))2

3 - Linear and Logistic Regression-7

(a)
=

1

2n

n
∑

i=1

∂

∂θj
(θTx(i) − y(i))2

(b)
=

1

2n

n
∑

i=1

2(θTx(i) − y(i))x
(i)
j

(c)
=

1

n

n
∑

i=1

(θTx(i) − y(i))x
(i)
j (7)

Where in (a) we used the linearity of the derivative, In (b) and (c) we differentiated and

simplified the expression. By inserting Equation (7) in Equation (6) we get the following

update rule which is given by

θ
(t+1)
j := θ

(t)
j − α

n

n
∑

i=1

(θTx(i) − y(i))x
(i)
j , ∀j (8)

Now lets understand the intuition of Eq. (8). First, for simplicity, lets examine it for

n = 1. We get θ
(t+1)
j := θ

(t)
j −α(ŷ(i)−y(i))x

(i)
j , where ŷ(i) is the estimator of y(i) using the

linear regression model of the current iteration. Now, if denote by error(i) = (ŷ(i)−y(i)),

then the update is θ
(t+1)
j := θ

(t)
j −α · error(i) · x(i)

j . Namely, update θ
(t)
j by a linear offset

that is proportional to the estimation error multiply by the input. And if now we have

n > 1, then we average over all the updates, so the noise would be less effective at each

iteration.

It can be easily verified that at every update, the algorithm uses the entire training set

to compute the gradient. For that reason we call this way of using gradient descent as

batch gradient descent. Alternatively, we can use only one training example to update θ

every iteration. The update rule at this case is given by,

for i=1 to n, {

θ
(t+1)
j := θ

(t)
j − α(θTx(i) − y(i))x

(i)
j , ∀j (9)

}
In this case, we call the algorithm Stochastic Gradient Descent (or Incremental Gradient

Descent). Next, let talk about our second method for optimizing C(θ). Our next method

3 - Linear and Logistic Regression-8

uses the fact that finding an extremum of an a function is equal to finding its derivative’s

zeros.

Definition 3 (Newton-Raphson Method)

For some f : R → R differentiable over R, its zeros can be found by an iterative

process with the following update rule.

1) Set θ0 as the initial guess for θ∗, such as f(θ∗) = 0.

2) Repeat the following update rule until d(θ(t+1), 0) < δ, where δ is defined to be

the convergence tolerance, d(·) is defined to be a distance norm.

θ(t+1) := θ(t) − f(θ(t))

f ′(θ(t))
(10)

where:

• t = 0, 1, . . . is the iteration number.

• f ′(θ) is the first derivative of f(θ).

First, to get some intuition about the algorithm’s process, let’s examine the private case

where f(x) = 1
3
x3. In our case the update rule is given by

x(t+1) := x(t) − 1

3
x(t). (11)

The following figures presents the algorithm process in the first iterations.

Fig. 10: initial guess of

Newton-Raphson method

Fig. 11: 1 iteration of

Newton-Raphson method

Fig. 12: 5 iterations of

Newton-Raphson method

In the leftmost figure, we can see the initial guess for x, denoted by x0. In the middle

figure, we can see how the algorithm, calculate its next guess of x. First, it calculates the

tangent of f(x) at x0, and then sets the next guess at the point where the tangent cross

3 - Linear and Logistic Regression-9

the x axis. We can think of that as estimating the zeros of f(x) as if f(x) was a linear

function. From this point of view let’s find the derive the update rule.

Fig. 13: Newton-Raphson method visualiza-

tion

The tangent’s slope is the derivative of f(x) at xt so we can conclude that

f ′(x(t)) =
f(x(t))− 0

x(t) − x(t+1)
. (12)

By simplifying the equation above we get

x(t+1) := x(t) − f(x(t))

f ′(x(t))
, (13)

which is the update rule noted in the algorithm’s definition. Now, When applying Newton-

Raphson’s (N-R’s) method in minimizing the cost function, We will choose

x , θ

f(·) , C ′(·)

f ′(·) , C ′′(·).

Therefore, the update rule for minimizing the cost function will be

θ(t+1) := θ(t) − C ′(θ(t))

C ′′(θ(t))
. (14)

In case that θ is a vector we can generalize the update rule to be

θ(t+1) := θ(t) −H−1
θ ∇θC(θ(t)), (15)

3 - Linear and Logistic Regression-10

where

• Hθ is the Hessian matrix of C with respect to θ, whose entries are given by

Hi,j =
∂2C(θ)

∂θi∂θj

• ∇θC(θ(t)) is the gradient of C with respect to θ.

Note that for a quadratic cost function, its gradient will be a linear function of θ and

therefore the algorithm will converge after one iteration (verify that you understand why

it is true). More generally, N-R method converges faster that gradient descent (this will

not be proven here), but it is more computationally expensive. That is because every

update rule the algorithm needs to find and invert (∼ m3 operations) the Hessian matrix.

Analytic Minimization

In some cases, there could be found an analytic, closed-formed solution for θ∗ which

minimizes the cost function. This is not always the case, but for linear regression there

is an analytic solution. In order to find a solution we take the derivatives of the cost

function and set them to zero. In terms of convenience, let’s make some notations that

will ease our process of finding θ∗.

Let X be the design matrix, whose rows represent the training example’s index, and

its columns represent the feature’s index. E.g, Xij represents the jth feature of the ith

training example. X ∈ Rm+1×n is given by

X =











(x(1)) (x(2)) · · · (x(n))











.

Now, let ~y be the vector of the target values, such as (~y)i = y(i). This means that ~y ∈ Rn

is given by

~y =















y(1)

y(2)

...

y(n)















.

3 - Linear and Logistic Regression-11

Next, given that hθ(x
(i)) = (x(i))T θ, we can express the term hθ(x

(i))− y(i) by

hθ(x
(i))− y(i) =

(

XT θ − ~y
)

i
.

Combined with the fact that for some vector ~a, the property ~aT~a =
∑

i a
2
i holds, we can

conclude that

1

2n

(

XT θ − ~y
)T (

XT θ − ~y
)

=
1

2n

n
∑

i=1

(θTx(i) − y(i))2 , C(θ). (16)

Now, let’s take derivatives with respect to θ.

∇θC(θ)
(a)
= ∇θ

{

1

2n

(

XT θ − ~y
)T (

XT θ − ~y
)

}

(b)
=

1

2n
∇θ

{

θTXXT θ − θTX~y − ~yTXT θ + ~yT~y
}

(c)
=

1

2n
∇θ

{

tr θTXXT θ − tr θTX~y − tr ~yTXT θ + tr ~yT~y
}

(d)
=

1

2n
∇θ

{

tr θTXXT θ − 2 tr~yTXTθ
}

(e)
=

1

2n

(

2XXT θ − 2X~y
)

=
1

n

(

XXTθ −X~y
)

Where in (a) we used the Equation (16). In (b) we simplified the cost function and used

the linearity of the gradient operator. In (c) we used the fact that a trace of a real number

is the number itself, and we eliminated the ~yT~y term, because it has no dependency on

θ. In (d) we used the fact that tr a = tr aT . In (e) we used the following rules of matrix

calculus,

• ∇A trATBA = (B +BT)A, where A = θ, B = XXT .

• ∇A trBTA = B, where A = θ, B = X~y.

By setting the gradient to the zero vector we get that

XXT θ∗ = X~y

⇓

θ∗ =
(

XXT
)−1

X~y (17)

3 - Linear and Logistic Regression-12

Where the term
(

XXT
)−1

X is an m+1-by-n matrix and is called the pseudo-inverse of

X . So, by taking derivatives and setting them to zero, we can try finding explicitly θ∗ for

any model that maps x ∈ X to y ∈ Y , or any type of cost function. So, why should we

use an iterative process that finds θ∗? The first reason is that inverting matrix could be

very inaccurate calculation in the computer due to rounding errors. The second reason

is that inverting an m-by-m matrix takes ∼ m3 operations, and for large m it could be

more time-efficient to calculate θ∗ with an iterative process. The Third reason is that it

is sometimes not possible to find a closed-form solution for θ∗ due to the complexity of

the cost function nor the hypothesis’.

IV. PROBABILISTIC INTERPRETATION

In the previous sections, when using the linear regression on a regression problem,

we used some heuristic explanations for choosing the cost function to be the quadratic

cost function, and explained why we minimizes it. Now, let’s make some probabilistic

assumptions on our problem, then let’s try to back up our heuristic explanations with

probabilistic justifications, and specifically we will use the Maximum Likelihood principle

that we introduced in the first lecture.

Let’s assume that our target variables, the y(i)’s, are given by the equation

y(i) = θTx(i) + ǫ(i). (18)

Where ǫ(i) is the error, which can be interpreted as random noise, inaccuracy in

measurements, limitation of the linear model etc. Moreover, let’s assume that the ǫ(i)’s

are i.i.d (independently and identically distributed) and its distribution is given by

ǫ(i) ∼ N (0, σ2), ∀i . (19)

Now, lets examine the probability of P (y(i)|x(i); θ) (the semi-colon indicates that y(i)

is parameterized by θ, since θ is not a random variable). Given x(i), θ, the term θTx(i)

is deterministic and hence P (y(i)|x(i); θ) is a Normal distribution with expectation θTx(i)

and variance σ2, i.e., N (θTx(i), σ2), ∀i . Let L(θ) be the likelihood function, which is

given by

L(θ) = p(~y|X ; θ). (20)

3 - Linear and Logistic Regression-13

The likelihood function represents the probability for all y(i)’s given all x(i)’s. Intuitively it

measures how likely is that y(i) is the correct value of x(i) for all i, under the probabilistic

assumptions we made. Due to that the entire training set is given, the likelihood function

depends exclusively on θ. Likewise, note that due to the fact ǫ(i)’s are i.i.d,we have,

L(θ) = p(~y|X ; θ)

= p(y(1), . . . , y(n)|x(1), . . . , x(n); θ)

(a)
=

n
∏

i=1

p(y(i)|x(i); θ)

(b)
=

n
∏

i=1

1√
2πσ2

exp

(

−
(

y(i) − θTx(i)
)2

2σ2

)

. (21)

Where in (a) we used the independency and in (b) we used the identical distribution.

Given the design matrix X (or equivalently x(1), . . . , x(n)) and the corresponding y(i)’s,

we want to make p (~y|X ; θ) as high as possible (because we know that y(i) is the correct

value that corresponds to x(i) for all i’s) by adjusting θ. Therefore we derived the

maximum likelihood criteria, which is maximizing L(θ). Instead of maximizing L(θ),

we can maximize any strictly increasing function of L(θ). Let l(θ) be the log likelihood

function which is given by l(θ) = logL(θ). Now let’s maximize l(θ).

l(θ) = logL(θ)

= log
n
∏

i=1

1√
2πσ2

exp

(

−
(

y(i) − θTx(i)
)2

2σ2

)

(a)
=

n
∑

i=1

log
1√
2πσ2

exp

(

−
(

y(i) − θTx(i)
)2

2σ2

)

(b)
=

n
∑

i=1

log
1√
2πσ2

−
(

y(i) − θTx(i)
)2

2σ2

(c)
= n log

1√
2πσ2

− 1

2σ2

n
∑

i=1

(

y(i) − θTx(i)
)2

(22)

Where in (a), (b) we used the logarithm properties, and in (c), we simplified the

expression. So in fact, maximizing the likelihood function is equivalent to minimizing

3 - Linear and Logistic Regression-14

the term
n
∑

i=1

(

y(i) − θTx(i)
)2

. (23)

Note that the exact value of the error’s variance, σ, doesn’t affect the values of θ∗. In

fact, it tells us that adjusting θ can’t minimize the errors which are caused by the ǫ(i)’s.

Finally, we can conclude that under the probabilistic assumptions we made earlier, we

derived the same goal, minimizing the term (23) which is exactly C(θ) as we defined

earlier.

V. LOGISTIC REGRESSION

Logistic regression, as opposed to its misleading name, is used for binary classification

problems, which means that y(i) can take values from the set {0, 1}. As we clarified in

the introduction section, the term ”regression” is rooted in regression analysis and not

in machine learning’s conventions. Note that for classification problems we cannot use

the linear regression model because in that case, y could get any value in the interval

(−∞,∞). Therefore, we should try other attitude to solving this problem.

Let’s adopt the probabilistic interpretation from last section. First, we will make some

probabilistic assumptions at the problem and then, we will use the maximum likelihood

criteria to adjust θ.

Assume that P (y(i)|x(i); θ) is Bernoulli(φ(i)), where φ(i) is the Bernoulli parameter

for the ith training example. Therefore,

p
(

y(i)|x(i); θ
)

= (φ(i))y
(i)

(1− φ(i))1−y(i).

Now we use our hypothesis to estimate the probability that x(i) belong to a certain class.

Let’s choose our hypothesis to be

φ̂(i) = hθ(x
(i))

= σ
(

θTx(i)
)

=
1

1 + e−θT x(i)
. (24)

Where σ(z) = 1
1+e−z is called the sigmoid function or the logistic function. Note that

σ(z) can output values in the interval [0, 1], such as

σ(z) → 1, z → ∞

3 - Linear and Logistic Regression-15

σ(z) =
1

2
, z = 0

σ(z) → 0, z → −∞

Moreover, σ(z) is differentiable over R and its derivative satisfies the following property

σ′(z) = − 1

(1 + e−z)2
(−e−z)

=
1

1 + e−z

e−z

1 + e−z

=

(

1

1 + e−z

)(

1− 1

1 + e−z

)

= σ(z) (1− σ(z)) (25)

Our last assumption is that the training set was generated independently. Backed up

with these assumptions, let’s adjust θ to maximize the classification accuracy over the

training set, hopefully to yield accurate results for unseen x. Let’s use the maximum

likelihood criteria to adjust θ. The likelihood function in this case is given by

L(θ) = p (yn|xn; θ)

= p
(

y(1), . . . , y(n)|x(1), . . . , x(n); θ
)

=

n
∏

i=1

p
(

y(i)|x(i); θ
)

=
n
∏

i=1

(σ
(

θTx(i)
)

)y
(i)

(1− σ
(

θTx(i)
)

)1−y(i) (26)

As we stated in the previous section, we can maximize θ over any strictly increasing

function of L(θ). So, to simplify our calculations, let’s maximize the log likelihood

function

l(θ) = log

n
∏

i=1

(σ
(

θTx(i)
)

)y
(i)

(1− σ
(

θTx(i)
)

)1−y(i)

=

n
∑

i=1

y(i) log(σ
(

θTx(i)
)

) + (1− y(i)) log(1− σ
(

θTx(i)
)

) (27)

The log likelihood has an interpretation of Maximum likelihood criteria as developed

in (26)-(27) and its also related to cross entropy cost function.

3 - Linear and Logistic Regression-16

Consider the following cost:

Cn(θ) = −
n
∑

i=1

log P̂ (y(i)|x(i), θ) (28)

By the law of large number this cost convergence to

lim
n→∞

Cn(θ) = −E[log P (Y |X, θ)

= −
∑

x,y

p(y, x) log p(y|x.θ)

= −
∑

x

p(x)
∑

y

p(y|x) log p(y|, θ)

=
∑

x

p(x)H(pY |X=x, pY |X=x,θ), (29)

where last equality follows from the fact that for a fixed x,

−∑y pY |X(y|x) log pY |X,θ(y|x, θ) is the cross entropy H(pY |X=x, pY |X=x,θ). Hence

our objective is for any x to minimize H(pY |X=x, pY |X=x,θ). Recall that cross entropy

has the property

H(p, q) = H(p) +D(p||q), (30)

hence we minimize in the objective, for any x the divergence D(pY |X=x||pY |X=x,θ) where

pY |X(y|x) is the true conditional pmf and pY |X,θ(y|x, θ) is the one given by the model.

After finding the expression for the log likelihood function, we can use any of our

optimization methods we discussed earlier. Let’s implement the batch gradient ascent

method to maximize the log likelihood function of the Binary case Eq. (27). To do so,

we will need to find ∇θl(θ).

∂l(θ)

∂θj
=

n
∑

i=1

∂

∂θj
y(i) log(σ

(

θTx(i)
)

) + (1− y(i)) log(1− σ
(

θTx(i)
)

)

(a)
=

n
∑

i=1

y(i)
σ′
(

θTx(i)
)

σ (θTx(i))
x
(i)
j + (1− y(i))

−σ′
(

θTx(i)
)

1− σ (θTx(i))
x
(i)
j

(b)
=

n
∑

i=1

y(i)
(

1− σ
(

θTx(i)
))

x
(i)
j − (1− y(i))σ

(

θTx(i)
)

x
(i)
j

(c)
=

n
∑

i=1

(

y(i) − σ
(

θTx(i)
))

x
(i)
j (31)

3 - Linear and Logistic Regression-17

Where in (a) we took derivatives, in (b) we used property (25), and in (c) we simplified

the expression. After finding the gradient, we can write the logistic regression update

rule

θ
(t+1)
j := θ

(t)
j + α

n
∑

i=1

(

y(i) − σ
(

θTx(i)
))

x
(i)
j . (32)

Next we will talk about how to generalize the logistic regression algorithm to a non-binary

classifier.

VI. ADDITIONAL WAY OF OBTAINING CROSS ENTROPY AS A COST FUNCTION

In the first part of this lecture we talked about linear regression and we introduced the

MSE cost function. The MSE cost function is widely used in applied mathematics and

machine learning. Using different cost functions will end up giving us different results

when using our optimization methods such as Gradient Descent for our regression and

classification problems.

In the second part of this lecture we introduced Logistic Regression and showed that

maximizing the log likelihood function resulted in achieving the Cross Entropy cost

function. The Cross Entropy cost function has an advantage over the MSE cost function

in some cases. In order to understand the advantage we shall first address a problem.

Assume we’re solving a Logistic regression problem, while using the logistic function

σ(θTx(i)) and choosing our cost function to be the MSE cost function:

C(θ) =
1

2n

n
∑

i=1

(hθ(x
(i))− y(i))2

=
1

2n

n
∑

i=1

(σ(θTx(i))− y(i))2 (33)

Now derive C(θ) in order to use Gradient Descent:

∂C(θ)

∂θj
=

1

n

n
∑

i=1

(σ(θTx(i))− y(i))x
(i)
j σ′(θTx(i)) (34)

3 - Linear and Logistic Regression-18

Updating, we will achieve:

θ
(t+1)
j := θ

(t)
j − α

n

n
∑

i=1

(σ(θTx(i))− y(i))x
(i)
j σ′(θTx(i)), ∀j (35)

Notice that for large or small values of θTx(i) the term σ′(θTx(i)) is very small (see

Fig. 14), causing what is called “Learning Slowdown”. This is a problem, because our

learning process can take many iterations to compute due to the slow update of θj (the

exact meaning of the term ’learning process’ will be clarified more in the next lecture).

Fig. 14: Sigmoid, σ(x), and its derivative, σ′(x).

Now let’s try a different approach. What if we could choose a cost function so that

the term σ
′

(θTx(i)) disappeared? In that case, the cost for a single training example X

would be:

∂C(θ)

∂θj
= (σ(θTx)− y)xj. (36)

For simplicity, define z = θTx. Now derive our cost function:

∂C(θ)

∂θj
=

∂C(θ)

∂σ(z)

∂σ(z)

∂z

∂z

∂θj
=

∂C(θ)

∂σ(z)
σ(z)(1 − σ(z))xj = (σ(z)− y)xj, (37)

3 - Linear and Logistic Regression-19

Hence,

∂C(θ)

∂σ(z)
=

(σ(z)− y)

σ(z)(1 − σ(z))
=

−y

σ(z)
+

1− y

1− σ(z)
(38)

Integrating this expression with respect to σ(z) will give us:

Cx = −[y log(σ(z)) + (1− y) log(1− σ(z))] (39)

This is the contribution to the cost from a single example. To get the full cost function

we must average over all training examples, obtaining:

C = −1

n

∑

x

(y log(σ(z)) + (1− y) log(1− σ(z)). (40)

We achieved the Cross-Entropy cost function.

To summarize, we showed in this section that the Cross-Entropy cost function has an

advantage. When using cross-entropy cost function the larger the error (σ(z) − y), the

larger the change in θ. This means that the learning process will potentially accelerate.

VII. SOFTMAX REGRESSION

Softmax regression is used when our target value y can take values from the discrete

set {1, 2, . . . , k}. In this case we assume that

p (y = 1|x; θ) = φ1

p (y = 2|x; θ) = φ2

...

p (y = k − 1|x; θ) = φk−1

p (y = k|x; θ) = 1−
k−1
∑

i=1

φi = φk. (41)

As you might noticed, in order to estimate the parameters of a classifier of k classes,

we need to estimate k − 1 parameters and the last one is determined by the other ones

(exactly like the case of a binary classifier). Due to (41) we can write the conditional

probability as

p (y|x; θ) = p (y = 1|x; θ)1{y=1}
p (y = 2|x; θ)1{y=2} · · · p (y = k|x; θ)1{y=k}

(42)

3 - Linear and Logistic Regression-20

where 1{·} is the indicator function that returns 1 if the argument statement is true and

0 otherwise. Now we will estimate φ1, . . . , φk−1 with the following functions

φ̂1 = hθ(1)(x) =
exp (θ(1))Tx

∑k

i=1 exp (θ
(i))Tx

φ̂2 = hθ(2)(x) =
exp (θ(2))Tx

∑k

i=1 exp (θ
(i))Tx

...

ˆφk−1 = hθ(k−1)(x) =
exp (θ(k−1))Tx
∑k

i=1 exp (θ
(i))Tx

φ̂k = hθ(k)(x) =
1

∑k

i=1 exp (θ
(i))Tx

Where θ(i) for all i = 1, . . . , k−1, and θ(k) = ~0 are the parameter that are used to generate

the hypothesis. Let Θ be the parameters matrix that contains θ(i) for all i = 1, . . . , k such

as

Θ =











(θ(1)) (θ(2)) · · · (θ(k−1)) 0











. (43)

Moreover, note that
∑k

i=1 φ̂i = 1, 0 ≤ φ̂i ≤ 1 so the φ(i)’s form a probability distribution.

Next, let’s use the maximum likelihood criteria on the log likelihood function. The log

likelihood is given by

l(Θ) = log p (~y|X ; Θ)

= log p
(

y(1), . . . , y(n)|x(1), . . . , x(n); Θ
)

(a)
= log

n
∏

i=1

p
(

y(i)|x(i); Θ
)

(b
= log

n
∏

i=1

hθ(1)(x
(i))1{y

(i)=1}hθ(2)(x
(i))1{y

(i)=2} · · ·hθ(k)(x
(i))1{y

(i)=k}

(c)
=

n
∑

i=1

1{y(i) = 1} loghθ(1)(x
(i)) + · · ·+ 1{y(i) = k} log hθ(k)(x

(i))

(d)
=

n
∑

i=1

k
∑

q=1

1{y(i) = q} log hθ(q)(x
(i)) (44)

3 - Linear and Logistic Regression-21

Where in (a) we used the assumption that the training set was generated independently,

in (b), (c) we used the logarithm properties and in (d) we simplified the expression. Let

substitute the hypothesis with its explicit function to get

l(Θ) =

n
∑

i=1

k
∑

q=1

1{y(i) = q} log hθ(q)(x
(i))

=
n
∑

i=1

k
∑

q=1

1{y(i) = q} log exp (θ(q))Tx(i)

∑k

p=1 exp (θ
(p))Tx(i)

(a)
=

n
∑

i=1

k
∑

q=1

1{y(i) = q}
[

log exp (θ(q))Tx(i) − log

k
∑

p=1

exp (θ(p))Tx(i)

]

(b)
=

n
∑

i=1

[

k
∑

q=1

1{y(i) = q}(θ(q))Tx(i) −
k
∑

q=1

1{y(i) = q} log
k
∑

p=1

exp (θ(p))Tx(i)

]

(c)
=

n
∑

i=1

[

k
∑

q=1

1{y(i) = q}(θ(q))Tx(i) − log

k
∑

p=1

exp (θ(p))Tx(i)

]

(45)

Where (a), (b) we used logarithm properties and in (c) we used the fact that the indicator

function return 1 only once for every training example. Now, let’s find the derivatives of

l(Θ) with respect to θ
(r)
j to form our gradient ascent update rule that will maximize our

log likelihood function.

∂l(Θ)

∂θ
(r)
j

=
∂

∂θ
(r)
j

n
∑

i=1

[

k
∑

q=1

1{y(i) = q}(θ(q))Tx(i) − log
k
∑

p=1

exp (θ(p))Tx(i)

]

(a)
=

n
∑

i=1

[

k
∑

q=1

∂

∂θ
(r)
j

1{y(i) = q}(θ(q))Tx(i) − ∂

∂θ
(r)
j

log

k
∑

p=1

exp (θ(p))Tx(i)

]

(b)
=

n
∑

i=1

[

1{y(i) = r}x(i)
j − exp (θ(r))Tx(i)

∑k

p=1 exp (θ
(p))Tx(i)

x
(i)
j

]

(c)
=

n
∑

i=1

[

1{y(i) = r} − exp (θ(r))Tx(i)

∑k

p=1 exp (θ
(p))Tx(i)

]

x
(i)
j

(d)
=

n
∑

i=1

[

1{y(i) = r} − p
(

y(i) = r|x(i); Θ
)]

x
(i)
j (46)

Where in (a) we used the linearity of the derivative, in (b) we took derivatives, and in

(c), (d) we simplified the expression. Finally we can write our batch gradient ascent

3 - Linear and Logistic Regression-22

update rule to be

θ
(r)
j := θ

(r)
j + α

n
∑

i=1

[

1{y(i) = r} − p
(

y(i) = r|x(i); Θ
)]

x
(i)
j (47)

Note that the gradient’s value goes to 0 when

y(i) = r, p
(

y(i) = r|x(i); Θ
)

→ 1

y(i) 6= r, p
(

y(i) = r|x(i); Θ
)

→ 0 , ∀i, r

so the gradient stops adjusting Θ when p
(

y(i) = r|x(i); Θ
)

is close to 1 for the correct

class and close to 0 for the incorrect classes, which approves that our results makes sense.

REFERENCES

[1] Andrew NG’s machine learning course. Lecture on Supervised Learning http://cs229.stanford.edu/materials.html.

http://cs229.stanford.edu/materials.html

	An introduction to Regression vs Classification
	Linear Regression
	Cost Function Minimization
	Probabilistic Interpretation
	Logistic Regression
	Additional way of obtaining Cross Entropy as a cost function
	Softmax Regression
	References

